
ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
DEOK-KYEONG JANG∗,MOVIN Inc., South Korea
DONGSEOK YANG∗,MOVIN Inc., South Korea
DEOK-YUN JANG∗,MOVIN Inc., South Korea
BYEOLI CHOI∗,MOVIN Inc., South Korea
DONGHOON SHIN,MOVIN Inc., South Korea
SUNG-HEE LEE†, KAIST, South Korea

Fig. 1. Our ELMO framework enables upsampling motion capture (60 fps) from LiDAR point cloud (20 fps) in real-time.

This paper introduces ELMO, a real-time upsampling motion capture frame-
work designed for a single LiDAR sensor. Modeled as a conditional autore-
gressive transformer-based upsampling motion generator, ELMO achieves 60
fpsmotion capture from a 20 fps LiDAR point cloud sequence. The key feature
of ELMO is the coupling of the self-attention mechanism with thoughtfully
designed embedding modules for motion and point clouds, significantly ele-
vating the motion quality. To facilitate accurate motion capture, we develop
a one-time skeleton calibration model capable of predicting user skeleton off-
sets from a single-frame point cloud. Additionally, we introduce a novel data
augmentation technique utilizing a LiDAR simulator, which enhances global
root tracking to improve environmental understanding. To demonstrate the
effectiveness of our method, we compare ELMO with state-of-the-art meth-
ods in both image-based and point cloud-based motion capture. We further
conduct an ablation study to validate our design principles. ELMO’s fast infer-
ence time makes it well-suited for real-time applications, exemplified in our
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demo video featuring live streaming and interactive gaming scenarios. Fur-
thermore, we contribute a high-quality LiDAR-mocap synchronized dataset
comprising 20 different subjects performing a range of motions, which can
serve as a valuable resource for future research. The dataset and evaluation
code are available at https://movin3d.github.io/ELMO_SIGASIA2024/

CCS Concepts: • Computing methodologies→Motion capture;Motion
processing; Neural networks.

Additional Key Words and Phrases: Motion capture, Motion synthesis, Char-
acter animation, Point cloud, Deep learning
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1 INTRODUCTION
With the increasing need for virtual avatars in 3D content creation
and metaverse platforms, real-time motion capture technology is
experiencing a notable surge in demand. Despite the strides made
by inertial and optical sensors-based solutions with great accuracy,
they remain costly and cumbersome for average consumers. Vari-
ous approaches address this limitation by reducing the number of
body-worn sensors [Von Marcard et al. 2017] and exploring more
accessible devices such as RGB cameras [Wei and Chai 2010]. How-
ever, RGB cameras and inertial sensors lack explicit information
on global translation, leading to drifting in the output. Research
utilizing depth sensors, such as RGB-D cameras [Zollhöfer et al.
2014] and LiDARs [Jang et al. 2023a], demonstrates enhanced global
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tracking. On the other hand, the measurements from depth cam-
eras suffer from noise and LiDARs’ low framerate introduces pose
discontinuities in real-time applications, typically requiring higher
framerates over 60 frames per second (fps).

To address these limitations, we propose ELMO, a novel real-time
upsampling motion capture framework designed to derive 60 fps
mocap data from a 20 fps point cloud sequence captured by a single
LiDAR sensor. The core concept involves using a sequence of sam-
pled point clouds from the past to the current and one future frame
to generate three upsampled poses. Our motion generator adopts
a conditional autoregressive transformer-based architecture con-
sidering past inferred motion and acquired point cloud to establish
the relationship between the input point cloud and the output up-
sampled poses. To overcome self-occlusions in single LiDAR setups,
our framework includes a mechanism for sampling a latent vector
from a motion prior. This vector is then processed by the genera-
tor to predict plausible poses, particularly in scenarios involving
occlusions.
To effectively capture the correlation between the LiDAR point

cloud and the human body joints, we design motion and point cloud
embedding modules such that joint features preserve the skeletal
graph structure, a root feature captures global coordinate informa-
tion, and point features find characteristics of local regions in the
point cloud, dubbed body-patch groups. Leveraging the self-attention
mechanism in our transformer generator, we facilitate the learning
of attention between individual body-patch groups and human joints
for each embedding feature. This approach significantly enhances
the quality of the output motions.
Real-time motion capture relies on accurately tracking global

translation, crucial for seamless interaction between avatars and
their environment or objects. Acknowledging the challenge of gath-
ering comprehensive data across the capture space, we present a
novel data augmentation technique leveraging a LiDAR simulator.
We apply global rotations to each original motion clip and fit the
SMPL body model [Loper et al. 2015] to compute collision points
with simulated lasers. Implementing this augmentation technique
on our training dataset resulted in a noticeable enhancement in the
quality of the mocap results.

Furthermore, we developed a one-time skeleton calibration model
that infers user skeleton offsets from a single-frame point cloud
acquired while the user is in the A-pose. Skeleton calibration is a
fundamental step in motion capture, determining initial joint offsets,
global trajectory, and joint rotations.
Figure 1 presents snapshots of real-time mocap results from

ELMO. To demonstrate the effectiveness of our framework, we con-
duct thorough comparisons with state-of-the-art image-based and
point cloud-based methods, along with an ablation study to validate
our design choices. Additionally, we conduct various experiments,
such as testing for global drifting, to verify the essential elements
required for accurate motion capture.
To the best of our knowledge, our work is the first real-time

upsampling motion capture framework using a single LiDAR. By
maintaining low latency, ELMO is well-suited for live application
scenarios. Our demo video provides example use cases including
live streaming and interactive gaming. The major contributions of
our work can be summarized as follows:

• We present the first real-time upsampling motion capture using
a single LiDAR, offering low-latency performance for diverse
real-time applications.

• Our novel embedding and generator architecture effectively con-
structs attention maps between body-patch point groups and
human joints, enabling precise upsampling in motion capture.
Additionally, we propose a one-time skeleton calibration model
to predict user skeleton offsets from a single-frame point cloud.

• We introduce a new LiDAR-simulation-based data augmentation
technique that leverages the unique characteristics of LiDAR
sensors to enhance global translation tracking performance. Fur-
thermore, we release a high-quality LiDAR-mocap synchronized
dataset featuring 20 subjects performing various actions.

2 RELATED WORK

2.1 Motion Capture
Optical and inertial systems stand out in the professional market for
their high accuracy. However, a shared challenge across these mocap
techniques is body-worn sensors that may restrict user motion or
shift from their initial positions. Additionally, a time-consuming
setup and calibration are required for the quality of captured data. A
prominent research focus involves reducing the number of sensors
and reconstructing full-body motion from a sparse setup [Huang
et al. 2018; Jiang et al. 2022; Lee et al. 2023b; Ponton et al. 2023;
Winkler et al. 2022; Yang et al. 2024]. While more accessible than
previous methods, they still grapple with inherent issues of wearable
sensors.
Consequently, markerless methods [Aguiar et al. 2008; Bregler

and Malik 1998] have garnered significant attention for their no-
table advancement in eliminating the need for body-worn sensors.
Moreover, they enhance the accessibility of mocap by using widely
available devices such as webcams and RGB cameras. Simultane-
ously, research is underway on both mono [Bazarevsky et al. 2020;
Bogo et al. 2016; Huang et al. 2022; Kocabas et al. 2020; Kolotouros
et al. 2019; Pavlakos et al. 2017; Shetty et al. 2023; Wei et al. 2022; Ye
et al. 2023; Zhu et al. 2022] and multi-view camera [Amin et al. 2013;
Burenius et al. 2013; Dong et al. 2022] methods. Mono-camera setups
offer simplicity while multi-view systems excel in accuracy. While
offering supplementary depth information, RGBD solutions [Baak
et al. 2011; Mehta et al. 2017; Ying and Zhao 2021] face challenges
due to their limited field of view (FoV) and resolutions compared to
RGB cameras. This leads to noisy and unstable output poses.

2.2 LiDAR-based Pose Tracking
The latest image-based human pose tracking methods [Goel et al.
2023; Li et al. 2023a] have shown impressive quality through a two-
step process involving 2D keypoint extraction and SMPL bodymodel
[Loper et al. 2015] fitting. However, the accuracy of 3D keypoints
and global translation is compromised during pose fitting in 2D
image space.
A promising solution is using LiDAR sensors, which provide

accurate 3D point cloud data. This method also offers a comprehen-
sive view of the subject’s full-body information, not possible with
sparse sensor setups. A seminal study by Li et al. [Li et al. 2022b]
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has demonstrated that LiDAR sensors can enhance the quality of
captured poses from distances. The following research explores
the fusion of LiDAR with IMUs [Ren et al. 2023] and RGB cameras
[Cong et al. 2023] as a complement for capturing detailed 3D human
poses. Recently, Human3D [Takmaz et al. 2023] has demonstrated
remarkable performance in body part segmentation, relying solely
on LiDAR point cloud data. Similarly, MOVIN [Jang et al. 2023a]
performed skeletal motion capture with a single LiDAR sensor. Our
approach addresses the limitations present in prior works, such as
motion jitters and a low frame rate, enhancing the feasibility of
LiDAR motion capture frameworks for real-time applications.

2.3 Neural Generative Models for Human Motion
Generating natural human motion while minimizing laborious and
time-consuming tasks has been among the central focuses in the
field of computer graphics. Upon the widespread integration of deep
neural networks, researchers developed technologies to generate
human motion from various inputs, encompassing low-dimensional
control signals, navigation goals, and text prompts.
Within the realm of neural networks, generative models such

as GANs [Goodfellow et al. 2014] and VAEs [Kingma and Welling
2013] have demonstrated notable success in producing high-quality,
natural motion. GANs find application in diverse areas, including
character control [Wang et al. 2021], speech-driven gesture gener-
ation [Ferstl et al. 2019], and motion generation from a single clip
[Li et al. 2022a]. Conditional VAEs [Sohn et al. 2015] are employed
in motion generation methods that utilize additional constraints
such as past motion sequences [Ling et al. 2020], motion categories
[Petrovich et al. 2021], and speech [Lee et al. 2019; Li et al. 2020]. Re-
cent works have focused on creating a motion embedding space [Lee
et al. 2023a] and leveraging the latent space for tasks like motion
in-betweening [Tang et al. 2023], retargeting [Li et al. 2023b], and
style transfer [Jang et al. 2023b]. An alternative approach involves
using normalizing flow [Aliakbarian et al. 2022; Henter et al. 2020],
enabling exact maximum likelihood. In parallel, building on recent
advancements in diffusion models, researchers have extended their
application to language [Tevet et al. 2023; Zhang et al. 2022] and
music [Tseng et al. 2023]-driven motion synthesis. Methods utilizing
deep reinforcement learning frameworks also incorporate VAEs to
establish prior distributions for character control [Won et al. 2022],
skills [Dou et al. 2023], unstructured motion clips [Zhu et al. 2023],
and muscle control [Feng et al. 2023].

3 ELMO FRAMEWORK
Figure 2 (b) illustrates our upsampling motion capture framework
from a single-front LiDAR sensor at runtime. Our framework effec-
tively transforms 20fps LiDAR point cloud input into 60fps motion
in real-time, with a latency of one 20fps frame1. From the inference
point of view, the input to our framework is a previously inferred se-
quence of 60 frames (1 second) of motion, from past frame 𝑖−(6𝑠−1)
to current frame 𝑖 (where 𝑠 = 12), as well as a sequence of sampled
point clouds from the past to the current at timestamps 𝑖 − 5𝑠 , 𝑖 − 4𝑠 ,
𝑖 − 3𝑠 , 𝑖 − 2𝑠 , 𝑖 − 𝑠 , 𝑖 , and a newly captured point cloud at a future

1Since the input LiDAR operates at 20 fps, when considering a 1 future frame latency,
the timestamp will be 𝑖 + 3 from the perspective of a 60 fps system.

frame 𝑖 + 3. For the output, it generates the next three upsampled
poses for frames 𝑖 + 1, 𝑖 + 2, and 𝑖 + 3 at a rate of 60fps.

Our model is based on an autoregressive conditional transformer-
based architecture. At each time frame, we initially extract the
features of joints, the root, and points. During the training phase,
given the motion sequence as input, the motion distribution encoder
𝐸 generates a latent vector 𝑧, which is trained to shape the latent
variable 𝑧 into a Gaussian distribution (Figure 3). At the same time,
the motion generator𝐺 takes the past and current motion sequence,
a sampled point cloud sequence of past to one future frame, and
the latent vector 𝑧 as inputs, and generates upsampled poses of the
three future frames. During inference, the encoder 𝐸 is discarded.
Instead, we pass a randomly sampled latent vector 𝑧 through the
motion generator at each time frame, enabling the generation of
plausible poses.

3.1 Data Representation
The input and output of our framework consist of the 3D point cloud
and poses. We start by defining a pose vector for a single frame 𝑖 ,
which contains a joint vector and root vector. Following [Jang et al.
2023a], which suggests the importance of accurate global (world)
coordinate information of the character’s root for high-quality mo-
tion capture, we handle the joint vector and root vector distinctly.
The joint vector x𝑖 includes all joint local information including
joint local positions, rotations, velocity, and angular velocity with
respect to the parent joint, denoted as x𝑖 = [𝑥𝑡 , 𝑥𝑟 , ¤𝑥𝑡 , ¤𝑥𝑟 ] ∈ R𝑛 𝑗×15,
where 𝑥𝑡 ∈ R𝑛 𝑗×3, 𝑥𝑟 ∈ R𝑛 𝑗×6, ¤𝑥𝑡 ∈ R𝑛 𝑗×3, and ¤𝑥𝑟 ∈ R𝑛 𝑗×3. Here,
𝑛 𝑗 denotes the number of joints. The root vector r𝑖 represents the
global coordinates of each character, including the character’s global
root position, rotation, velocity, and angular velocity. Additional
vectors, such as foot contact, are also incorporated. Specifically, we
define the root vector as r𝑖 = [𝑟𝑡 , 𝑟𝑟 , ¤𝑟𝑡 , ¤𝑟𝑟 , 𝑐] ∈ R17, where 𝑟𝑡 ∈ R3,
𝑟𝑟 ∈ R6, ¤𝑟𝑡 ∈ R3, ¤𝑟𝑟 ∈ R3, and 𝑐 ∈ R2 for foot contact label. Lastly,
the input point cloud vector, representing the global position of hu-
man body points, is denoted as p𝑖 ∈ R𝑛𝑝×3, where 𝑛𝑝 is the number
of points.
Note that the captured motion is 60 fps and the LiDAR input is

20 fps, to prevent confusion, all frames described from now on are
in 60 fps.

3.2 Motion and Point Cloud Embedding
The embedding process consists of two components: motion em-
bedding and point embedding. The former extracts the spatial and
temporal features of the input motion sequence, while the latter
groups each point cloud into several local body-patch features.

Motion embedding. For motion, we utilize distinct embeddings
for joint features and root features, as shown in the left part of
Figure 2 (a). For embedding inputs at frame 𝑖 , we consider frames
from 𝑖 − (𝑠 − 1) to 𝑖 , denoted as [x𝑖 ]𝑖𝑖−(𝑠−1) = [x𝑖−(𝑠−1) , . . . , x𝑖 ] ∈
R𝑠×𝑛 𝑗×15 for joint vectors and [r𝑖 ]𝑖𝑖−(𝑠−1) = [r𝑖−(𝑠−1) , . . . , r𝑖 ] ∈
R𝑠×17 for root vectors. Note that we handle motions of length 𝑠
because our approach involves utilizing point cloud sequences sam-
pled at the interval of 𝑠 as inputs.
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Fig. 2. Overall network architectures. (a) Detail of the feature extraction pipeline. (b) Overview of generator for real-time upsampling LiDAR motion capture in
run-time.

For the joint feature embedding, we use spatial-temporal graph
convolutional blocks (STGCN) [Yan et al. 2018] to maintain the
local joint graph information of the human skeleton as much as
possible. The STGCN blocks embed an input sequential joint vectors
[x𝑖 ]𝑖𝑖−(𝑠−1) into a joint features fx

𝑖
after temporal average pooling

as follows:

fx𝑖 = TempAvgPool(ST-GCN( [x𝑖 ]𝑖𝑖−(𝑠−1) )) ∈ R𝑛 𝑗×𝐶 , (1)

where 𝐶 is a feature dimension.
For the root feature, a 1D temporal convolution block is utilized

to embed the sequential root vectors [r𝑖 ]𝑖𝑖−(𝑠−1) to get root feature
fr
𝑖
with equal feature dimension 𝐶:

fr𝑖 = TempAvgPool(Conv1D( [r𝑖 ]𝑖𝑖−(𝑠−1) )) ∈ R𝐶 . (2)

After the motion embedding process, we get a motion feature
[fx
𝑖
, fr
𝑖
] at frame 𝑖 , which achieves temporal alignment with the

point cloud data.

Point cloud embedding by body-patch. The right part of Fig-
ure 2 (a) illustrates the points body-patch embedding strategy. In-
spired by PointBERT [Yu et al. 2022], we group each point cloud
into several body part patches for each frame 𝑖 . Given an input
point cloud of the human body p𝑖 ∈ R𝑛𝑝×3, we employ farthest
point sampling (FPS) to select 𝑛𝑔 central points from the point cloud.
By grouping the k-nearest neighbors (k-NN) around these central
points, we create 𝑛𝑔 distinct local point patches, essentially form-
ing a body-patch cloud with 𝑘 elements each. To make these local
patches unbiased, we subtract their center coordinates. This step

effectively disentangles the structural patterns from the spatial coor-
dinates within the local patches. We then utilize Mini-PointNet [Qi
et al. 2017] to project these sub-body-patch clouds into point em-
beddings.
The Mini-PointNet involves the following steps: Initially, each

point within a patch is mapped to a feature vector via a shared
multilayer perceptron (MLP). Subsequently, max-pooled features
are concatenated to each feature vector. These vectors are then
processed through a second shared MLP and a final max-pooling
layer, resulting in the body-patch embedding. The overall point
cloud embedding process to extract point features fp

𝑖
is formalized

as follows:

fp
𝑖
= Mini-PointNet(body-patch grouping(p𝑖 )) ∈ R𝑛𝑔×𝐶 (3)

3.3 Upsampling Motion Generator
Our motion generator utilizes a conditional autoregressive model,
processing past inferred motion and acquired point cloud data as in-
puts. This establishes a relationship between the current point cloud
input and upsampled output poses. By leveraging self-attention
within this transformer-based architecture, our approach effectively
learns the attention between body-patch point group features and
motion features.

Tokenization. We implement a tokenization process for input
into a Transformer-based Motion Upsampling Generator, utilizing
three distinct token types as illustrated in Figure 2: the Combined
Token T𝑐𝑜𝑚𝑏

𝑖
, Masked Token T𝑚𝑎𝑠𝑘

𝑖
, and Predicted Token T𝑝𝑟𝑒𝑑

𝑖
.

The Combined Token T𝑐𝑜𝑚𝑏
𝑖

integrates the Motion Token (T𝑚𝑜𝑡
𝑖

)
and Point Token (T𝑝𝑜𝑖𝑛𝑡

𝑖
). The Motion Token consists of joint and
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root features, added with learnable spatial joint encodings. Con-
versely, the Point Token, representing the point features of 𝑛𝑔 body
patches, lacks positional information. Therefore, a two-layer MLP
is used to assign positional encodings to each center point of the
body-patch groups, which are then added to the body-patch point
features:

T𝑚𝑜𝑡𝑖 = [fx𝑖 , f
r
𝑖 ] + Pspat, T𝑝𝑜𝑖𝑛𝑡

𝑖
= fp

𝑖
+ Pcent

T𝑐𝑜𝑚𝑏𝑖 = [T𝑚𝑜𝑡𝑖 ,T𝑝𝑜𝑖𝑛𝑡
𝑖

],
(4)

where Pspat denotes spatial joint encoding with learnable param-
eters, and Pcent represents center point positional encoding for
body-patch groups.
Next, the Masked Token T𝑚𝑎𝑠𝑘

𝑖
is a learnable masking token

added with the same spatial positional encoding Pspat that, upon
passing through the upsampling motion generator, becomes the
Predicted Token T𝑝𝑟𝑒𝑑

𝑖
. The Predicted Token, or pose feature, is

employed in reconstructing the upsampled poses. Notably, the Pre-
dicted Token (pose feature) corresponding to the masked token
frame 𝑖 represents a pose feature for a single frame, as opposed to
the motion feature that deals with the temporal sequence of 𝑖−(𝑠−1)
to 𝑖 as used in the combined token. The pose feature also comprises
joint features and the root feature.

Transformer-based generator. After the tokenization process,
as illustrated in Figure 2 (b), we create an input sequence by concate-
nating the combined tokens T𝑐𝑜𝑚𝑏

𝑖
corresponding to frames 𝑖 − 5𝑠 ,

𝑖 − 4𝑠 , 𝑖 − 3𝑠 , 𝑖 − 2𝑠 , 𝑖 − 𝑠 , and 𝑖 along with the Point token T𝑝𝑜𝑖𝑛𝑡
𝑖+3

for frame 𝑖 + 3. Lastly, we pad the masked tokens corresponding to
future frames 𝑖 + 1, 𝑖 + 2 and 𝑖 + 3. The temporal positional encoding
Ptemp derived from sinusoidal functions for each time frame is then
added to the input sequence.
Given the sampled latent vector 𝑧, the Upsampling Motion Gen-

erator𝐺 is an autoregressive model that generates future 𝑖 + 1, 𝑖 + 2,
and 𝑖 + 3 pose features (predicted token) at the target frame rate
(60fps), conditioned on the input sequence. These 3 pose features
are further expanded using expanding modules to obtain the joint
vectors [x̃𝑖+1, x̃𝑖+2, x̃𝑖+3] and root vectors [r̃𝑖+1, r̃𝑖+2, r̃𝑖+3]. We adopt
the standard vision transformer for the generator 𝐺 , consisting of
multi-headed self-attention layers and FFN blocks. The expanding
modules utilize inverse forms of the motion embedding modules.
However, a difference is that the expansion is performed separately
for the pose of each frame. The overall upsampling generator process
is formalized as follows:

[T𝑝𝑟𝑒𝑑
𝑖+1 ,T𝑝𝑟𝑒𝑑

𝑖+2 ,T𝑝𝑟𝑒𝑑
𝑖+3 ] =

𝐺 ( [T𝑐𝑜𝑚𝑏 ,T𝑝𝑜𝑖𝑛𝑡
𝑖+3 ,T𝑚𝑎𝑠𝑘𝑖+1 ,T𝑚𝑎𝑠𝑘𝑖+2 ,T𝑚𝑎𝑠𝑘𝑖+3 ] + Ptemp, 𝑧),

[x̃𝑖+1, x̃𝑖+2, x̃𝑖+3] = De-GCN(
[
T𝑝𝑟𝑒𝑑
𝑖

[: 𝑛 𝑗 ]
]𝑖+3
𝑖+1

),

[r̃𝑖+1, r̃𝑖+2, r̃𝑖+3] = De-Conv1D(
[
T𝑝𝑟𝑒𝑑
𝑖

[𝑛 𝑗 : 𝑛 𝑗 + 1]
]𝑖+3
𝑖+1

),

(5)

where T𝑐𝑜𝑚𝑏 = [T𝑐𝑜𝑚𝑏
𝑖−5𝑠 ,T

𝑐𝑜𝑚𝑏
𝑖−4𝑠 ,T

𝑐𝑜𝑚𝑏
𝑖−3𝑠 ,T

𝑐𝑜𝑚𝑏
𝑖−2𝑠 ,T

𝑐𝑜𝑚𝑏
𝑖−𝑠 ,T𝑐𝑜𝑚𝑏

𝑖
].

3.4 Motion Prior
The motion prior used to sample the latent vector 𝑧 is constructed
via the motion distribution encoder 𝐸 as depicted in Figure 3. Due

Fig. 3. Constructing the motion prior in the training phase.

to self-occlusions among body parts commonly encountered by a
single LiDAR sensor, the latent vector 𝑧, derived from a motion prior,
assists the generator in accurately predicting plausible poses.

To effectively capture the spatial-temporal dependencies between
past and current poses, we use a transformer architecture, akin
to the generator𝐺 . The motion distribution encoder 𝐸 processes a
learnable prior token T𝑝𝑟𝑖𝑜𝑟 along with concatenated motion tokens
[T𝑚𝑜𝑡
𝑖−5𝑠 , . . . , T

𝑚𝑜𝑡
𝑖+3 ] as its inputs. These inputs facilitate encoding the

parameters of a Gaussian distribution N(𝜇, 𝜎). The reparameteriza-
tion trick is then applied to transform these parameters and obtain
the latent vector 𝑧 ∈ R𝐶 :

𝐸 (𝑧 | [T𝑚𝑜𝑡𝑖−5𝑠 , . . . ,T
𝑚𝑜𝑡
𝑖+3 ] + Ptemp,T𝑝𝑟𝑖𝑜𝑟 ) = N(𝑧; 𝜇, 𝜎) (6)

3.5 Point Cloud Processing
When acquiring point clouds from LiDAR in each frame, extraneous
noise points that do not correspond to the human body are often
captured due to the surrounding environment. Thus, as a prelimi-
nary step, we employ a Statistical Outlier Removal algorithm to filter
out these irrelevant points. This method uses the mean distance of
each point to its neighbors. Points that have a distance significantly
larger than the average are considered outliers.
After filtering, our framework is designed to handle an input

point cloud with 𝑛𝑝 = 384 points. In cases where the number of
points acquired from LiDAR exceeds 384, we apply farthest point
sampling (FPS) to reduce the count. Conversely, if the number of
points is fewer than 384, we randomly select points and add small
noise to generate synthetic points, effectively padding the dataset
to the required size.

4 TRAINING THE ELMO FRAMEWORK
We train the entire framework end-to-end, optimizing for the loss
terms detailed in Section 4.2. Our training process leverages all
available data, both captured and augmented using the techniques
outlined in Section 4.1.

4.1 Data Augmentation
The primary goal of the augmentation is to make the training dataset
cover the entire capture space (4×4meters for our dataset acquisition
and experiments), as we use the global coordinate for the root.
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Fig. 4. Top: Snapshot of our LiDAR simulator. Red dots represent collision
points between the simulated lasers and the body mesh animated with the
augmented motion clips. Bottom: Augmentation results using mirroring
and simulation for 90°, 180°, and 270° global rotations. The yellow character
represents the original data, while the blue characters represent the aug-
mented data.

We employ two augmentation strategies: mirroring and rotating,
as described at the bottom of Figure 4. For mirroring, we double the
number of original data by flipping the skeleton and point cloud
data. Furthermore, we augment each motion clip by applying global
rotations of 90°, 180°, and 270°. However, unlike mirroring, rotating
the point cloud around the global origin poses a challenge as a
fixed LiDAR would capture different sides of the subject for rotated
motion clips. To address this issue, we use a point cloud simulator.
The simulator is implemented with the Unity3D engine and the

virtual LiDAR follows the Hesai QT128 specifications [hes 2023]. To
compute collision points with simulated lasers, we use the SMPL
body mesh, with its shape parameters manually adjusted to match
the subject’s skeleton. The top image of Figure 4 shows a snapshot of
the resulting simulated point clouds using our simulator. Following
our LiDAR placement guidelines to cover a 4m x 4m x 2.5m capture
volume, the virtual LiDAR is positioned 3.5 meters from the center
of the capture zone (global origin), 1 meter above the ground, and
angled 20 degrees downward. During simulation, motion clips run
at 60 fps, and point cloud data are captured every 3 frames (20 fps).

4.2 Losses
The overall framework is trained by minimizing the reconstruc-
tion L𝑟𝑒𝑐 , velocity loss L𝑣𝑒𝑙 , and KL-divergence L𝑘𝑙 losses. The
reconstruction loss comprises joint feature loss on both local and
global coordinates and root feature loss. The velocity loss is the
difference between consecutive features. The reconstruction and
velocity loss are computed for frames 𝑖 +1, 𝑖 +2, and 𝑖 +3. In addition,
the KL-divergence loss regularizes the distribution of latent vector
𝑧 to be near the prior distribution N(0, 𝑰 ).

The total loss function is thus:

L𝑡𝑜𝑡𝑎𝑙 =L𝑟𝑒𝑐 |𝑖+3𝑖+1 +𝑤𝑣𝑒𝑙L
𝑣𝑒𝑙 |𝑖+3𝑖+1 +𝑤𝑘𝑙L

𝑘𝑙

L𝑟𝑒𝑐𝑖 =∥x̃𝑖 − x𝑖 ∥1 + ∥𝐹𝐾 (x̃𝑖 ) − 𝐹𝐾 (x𝑖 )∥1 + ∥r̃𝑖 − r𝑖 ∥1
L𝑣𝑒𝑙𝑖 =∥𝑉 (x̃𝑖 ) −𝑉 (x𝑖 )∥1 + ∥𝑉 (𝐹𝐾 (x̃𝑖 )) −𝑉 (𝐹𝐾 (x𝑖 ))∥1

+∥𝑉 (r̃𝑖 ) −𝑉 (r𝑖 )∥1,

(7)

where 𝑉 (x) = x0−x1
ℎ

, 𝑉 (𝐹𝐾 (x)) =
𝐹𝐾 (x0 )−𝐹𝐾 (x1 )

ℎ
, ℎ is time step,

and 𝑤𝑘𝑙 , 𝑤𝑑𝑒𝑙𝑡𝑎 are relative weights. 𝐹𝐾 represents forward kine-
matics.

4.3 Implementation details
The AdamW optimizer was used over 30 epochs with a learning
rate of 10−4. The loss weights 𝑤𝑣𝑒𝑙 and 𝑤𝑘𝑙 were both set to 1. In
the embedding module, the ST-GCN and 1D convolution comprise
one layer along with temporal pooling to extract joint features and
the root feature. We split the input point cloud into 32 body-patch
groups, which are input to Mini-PointNet, composed of one set
abstraction layer. The upsampling motion generator 𝐺 comprises 3
vision transformer layers with 384 channels and 8 heads. Themotion
distribution encoder 𝐸 has the same architecture as the generator.
The expanding module has an architecture symmetric to the em-
bedding module. To prevent covariate shifts during autoregressive
inference, we set the prediction length to 20 frames for training.
Scheduled sampling was also utilized to make the model robust to
its own prediction errors, enabling long-term generation. Training
took around three days using two 24GB RTX4090 GPUs.

5 SKELETON CALIBRATION MODEL
Commercial motion capture systems measure bone lengths directly
[xse 2011] or optimize from pre-programmed marker sets [opt 2009].
Prior data-driven methods continuously predict body shape and
motion together from input sequences [Jiang et al. 2023; Ren et al.
2024]. In line with commercial setups, we devise a one-time skeleton
calibration model to precede the capture session. The model predicts
the user skeleton offsets from a single-frame point cloud, acquired
while the user is in the A-pose.

5.1 Dataset Synthesis
To accommodate diverse body shapes among users, we generate a
synthetic dataset comprising 50,000 pairs of an A-pose point cloud
and initial joint offsets using our LiDAR simulator (Sec.4.1). Each
data pair was generated through a randomized process to ensure the
model’s efficacy in real-world scenarios, despite being trained and
validated solely on synthetic data. SMPL shape parameters of each
subject are sampled in [-2, 2], covering 95% of the SMPL shape space.
To enhance robustness against deviations in LiDAR placements in
practice, we introduce random positional and rotational offsets to
the virtual LiDAR, with maximums of 10cm and 5°, respectively. To
further improve the model’s robustness against variations in user
A-poses, we apply random joint rotations: shoulder joints z-axis [65°,
45°], shoulder joints x-axis [-30°, 30°], hip joints y-axis [-30°, 20°], and
hip joints z-axis [-20°, 4°]. In the final stage, the obtained SMPL joint
offsets are retargeted to our skeleton hierarchy. Figure 5 presents
example images of SMPL body mesh with random shape parameters
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Fig. 5. Samples of random SMPL body meshes in A-poses with correspond-
ing skeletons and simulated point clouds.

in random A poses, corresponding skeletons, and simulated point
clouds. The dataset was split for training and validation in an 80:20
ratio, resulting in 40,000 and 10,000 pairs, respectively.

5.2 Calibration Model & Training
Our skeleton calibration model is a simple 6-layer multi-layer per-
ceptron with bias disabled. It takes as input a flattened vector of
384 3D points sorted by their global height, 𝑥 ∈ R384×3. A pre-
processing step, detailed in Sec. 3.5, is applied to sampled A-pose
point clouds to ensure a fixed number of input points. Additionally,
we apply noise (𝑋 ∼ N(1cm, 12)) to each position channel (x, y,
z) of simulated points to enhance the robustness of our model in
handling real-world noise induced by factors such as user outfits
and hairstyles. Given this input, our model predicts skeleton off-
sets, including initial hip height and 20 joint offsets, represented
as 𝑦 ∈ R1+20×3. Training is conducted for 220 epochs to minimize
mean squared error, utilizing the Adam optimizer with a learning
rate of 5.0 × 10−6, and employing a batch size of 2048.

6 EVALUATION AND EXPERIMENTS
To assess the effectiveness of our framework, we conduct both
quantitative and qualitative evaluations, comparing it with state-of-
the-art (SOTA)methods in humanmotion tracking. Furthermore, we
examine how the self-attention mechanism operates between body-
patch point groups and joint features by constructing attentionmaps.
Lastly, to showcase the real-time capability of ELMO,we present live-
streaming scenarios with both single and multi-person setups and
an interactive shooting game. For visual animation results, please
refer to the supplementary video.

6.1 Datasets
We construct the ELMO dataset, a high-quality, synchronized single
LiDAR-Optical Motion Capture-Video dataset featuring 20 subjects
(12 males / 8 females, height𝑐𝑚 ℎ ∼ N(170.66, 7.902), 155 ≤ ℎ ≤
180). Our objective is to capture a wide range of motions, styles, and
body shapes. We utilize a 4×4 meter space, Hesai QT128 LiDAR, and
an Optitrack system equipped with 23 cameras. The point cloud and
mocap data were recorded at 20 and 60 fps, respectively. We split
the 20 subjects into training and test sets with 17 and 3 subjects.

Table 1. Motion categories in ELMO dataset.

Range of Motion
Freely rotating an individual joint/joints in place & while moving
Static Movements
T-pose, A-pose, Idle, Look, Roll head
Elbows bent up & down, Stretch arms
Bow, Touch toes, Lean, Rotate arms
Hands on waist, Twist torso, Hula hoop
Lunge, Squat, Jumping Jack, Kick, Lift knee
Turn in place, Walk in place, Run in place
Sit on the floor
Locomotion
Normal walk, Walk with free upper-body motions
Normal Jog, Jog with free upper-body motions
Normal Run, Run with free upper-body motions
Normal Crouch, Crouch with free upper-body motions
Transitions with changing pace
Moving backward with changing pace
Jump (one-legged, both-legged, running, ...)

To capture point clouds from diverse distances and angles of a
single LiDAR, we subdivided the capture zone into four separate
subspaces and defined four viewing directions: forward, backward,
left, and right (+z, -z, +x, -x). For each action category, participants
executed the same action in 16 combinations of zone and viewing di-
rections. To ensure our model accommodates diverse human poses,
we initially captured a Range of Motion (ROM), including individ-
ual movements of each joint, along with their free combinations.
Subsequently, we recorded in-place motions, followed by diverse
locomotions involving different velocities, directions, and styles. Ta-
ble 1 presents details on action labels comprising the ELMO dataset.
The captured LiDAR point cloud and .bvh mocap files were precisely
synchronized by our preprocessing pipeline.

We additionally tested our algorithm on the MOVIN dataset [Jang
et al. 2023a] for quantitative evaluation. It consists of 10 subjects
including 4 males and 6 females performing actions such asWalking,
Jogging, Jumping, and Sitting on the floor. For the MOVIN dataset,
we use 8 subjects for the training and 2 subjects for the test set.

For qualitative comparison, we also created a wild test dataset
consisting of 3 subjects. To compare the performance of markerless
motion capture without a suit, we built a synchronized single LiDAR-
IMU-based Motion Capture-Video dataset. The IMU-based Motion
Capture system used Xsens Awinda [awi 2011].

6.2 Quantitative Evaluation
We quantitatively compare our results with SOTA image-based pose
tracking methods including VIBE [Kocabas et al. 2020], MotionBERT
[Zhu et al. 2022], and NIKI [Li et al. 2023a]. Additionally, MOVIN
[Jang et al. 2023a] serves as a primary comparison, utilizing the same
LiDAR input as our framework. The quantitative evaluation assesses
the methods using both MOVIN and our new ELMO dataset.
Quantitative measures are defined in terms of the mean joint

(J) and pelvis (P) position/rotation/linear velocity/angular velocity
errors (M*PE, M*RE, M*LVE, M*AVE). We measure joint errors for
the fixed pelvis and separately measure pelvis errors, as image-based
methods cannot explicitly track global trajectory. The accuracy of
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Table 2. Quantitative comparison between baseline and ELMO models on
the test splits of the ELMO and MOVIN datasets. “w/ dup” signifies output
upsampled via duplication, while “w/ interp” denotes via interpolation.
MOVIN† indicates the model retrained with the ELMO dataset. To ensure
a fair comparison on the MOVIN dataset, results from ELMO (Ours) are
downsampled to 20 fps.

MJPE𝑐𝑚 MJRE◦ MJLVE MJAVE
NIKI 14.30 18.04 1.41 2.35
MOVIN† w/ dup 7.03 11.87 1.32 1.65
MOVIN† w/ interp 7.05 11.87 1.08 1.45
ELMO (Ours) 4.86 10.41 0.38 0.77

MPPE𝑐𝑚 MPRE◦ MPLVE MPAVE
MOVIN† w/ dup 8.88 6.27 1.55 1.31
MOVIN† w/ interp 8.73 6.56 0.67 1.54
ELMO (Ours) 4.08 5.08 0.20 0.38

(a) ELMO dataset.

MJPE𝑐𝑚 MJRE◦ MJLVE MJAVE
VIBE 10.86 18.39 2.39 3.16
MotionBERT 10.62 18.05 1.75 2.24
NIKI 12.32 17.21 1.90 3.32
MOVIN 6.21 10.12 1.89 2.75
ELMO (Ours) 4.77 11.00 0.92 1.53

MPPE𝑐𝑚 MPRE◦ MPLVE MPAVE
MOVIN 4.42 11.64 2.46 4.94
ELMO (Ours) 4.42 6.49 0.49 0.91

(b) MOVIN dataset.

pelvis prediction significantly influences overall motion quality, as
errors at the root joint propagate along the kinematic chain of the
joint hierarchy. For comparison, we retarget the SMPL output of
NIKI to our skeleton hierarchy 2.

SOTA comparison on ELMO dataset. The upper section of
Table 2 compares our model’s quantitative measures with baselines
on the ELMO dataset. Given that MOVIN operates at 20 fps, we
retrain it with a downsampled ELMO dataset, and its outputs are
upsampled to 60 fps using duplication (w/ dup) and interpolation
(w/ interp) for comparison.

For both joint and pelvis measures, our ELMO significantly out-
performed the baselines. Compared to MOVIN upsampled with
interpolation, the best among the baselines, the improvements are
particularly notable in position measures, with a decrease of 2.19
cm in MJPE and 4.65 cm in MPPE. Additionally, our model showed
performance increases ranging from a minimum of 47% (MJAVE)
to a maximum of 75% (MPAVE), demonstrating its strength in cap-
turing natural, non-linear pose transitions in both temporal and
spatial spaces. This is further illustrated by the example outputs in
panel (a) of Figure 12, where ELMO generates poses with greater
accuracy (sitting, upper row) and faster reactions to input point
clouds (running, bottom row).

SOTA comparison on the MOVIN dataset. Since the MOVIN
dataset only provides 20 fps motion capture (mocap) data, we retrain

2Retargeting is performed to enable comparison within the same skeleton topology.
However, this process might introduce some unfairness.

Table 3. Quantitative measures of ablation models of future frame input
and dataset augmentation.

MJPE𝑐𝑚 MJRE◦ MJLVE MJAVE
ELMO20 w/ interp 5.05 11.45 0.54 0.91
ELMO baseline 6.33 12.48 0.48 0.84
+ 1 future frame 5.33 11.61 0.39 0.78
+ Augmentation (Ours) 4.86 10.41 0.38 0.77

MPPE𝑐𝑚 MPRE◦ MPLVE MPAVE
ELMO20 w/ interp 4.10 5.13 0.19 0.82
ELMO baseline 4.97 6.39 0.28 0.45
+ 1 future frame 5.05 5.20 0.19 0.39
+ Augmentation (Ours) 4.08 5.08 0.20 0.38

(a) ELMO dataset.

MJPE𝑐𝑚 MJRE◦ MJLVE MJAVE
ELMO baseline 6.14 11.31 1.02 1.58
+ 1 future frame 5.39 11.65 0.98 1.57
+ Augmentation (Ours) 4.77 11.00 0.92 1.53

MPPE𝑐𝑚 MPRE◦ MPLVE MPAVE
ELMO baseline 5.03 8.66 0.59 1.01
+ 1 future frame 5.08 6.69 0.55 0.95
+ Augmentation (Ours) 4.42 6.49 0.49 0.91

(b) MOVIN dataset.

ELMO on a synthetic 60 fps MOVIN dataset using interpolation,
and the outputs are then downsampled to 20 fps for comparison.
The bottom part of Table 2 compares quantitative measures of

our model with baselines on the MOVIN dataset. Overall, our ELMO
outperformed the baselines in joint measures, except for MJRE. De-
spite a slight increase in MJRE by 0.88◦ compared to MOVIN, ELMO
showed a notable improvement in MJPE by 1.44cm, indicating supe-
rior accuracy in joint positions. We observed that ELMO especially
performed better during occlusions, as shown in the bottom row
of the panel (b) of Figure 12, where the MOVIN output incorrectly
lifted the opposite arm. Moreover, ELMO significantly outperformed
MOVIN in MPRE, surpassing it by 5.15◦; the upper row of Figure
12 shows an instance where MOVIN exhibited a global y-axis flip
in the output.

Ablation study. To assess the impact of our novel upsampling
motion generator (Sec. 3.3) and data augmentation (Sec. 4.1), we
conducted an ablation study in (a) ELMO and (b) MOVIN datasets.
The baseline ELMO corresponds to the basic setup of our model ,
which predicts the poses of 3 future frames from the point cloud
input of the current frame. In addition, we include a 20 fps output
model without the upsampling scheme. For comparison within the
ELMO dataset, the 20 fps outputs are upsampled using interpolation,
denoted as ELMO20 w/ interp.
Table 3 presents metrics from ablation models. Testing on the

ELMO dataset revealed that incorporating a future frame input
generally decreased errors, except for MPPE, which maintained
comparable performance with a 0.08cm gap. This enhancement no-
tably improved the model’s accuracy in local body pose transitions
compared to the baseline. Dataset augmentation yielded modest
improvements in velocity errors but notably enhanced position and
rotation errors for both body joints and pelvis. In the case of ELMO20
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Fig. 6. Samples of offline outputs of ablation models. From left to right:
ELMO with future frame input and data augmentation (Yellow), only with
future frame input (Blue), and the baseline (Pink).

w/ interp., since the output poses are generated to match the point
cloud input fps, the position and rotation errors are relatively low,
but the overall velocity error is high.

Figure 6 displays examples from the ablation models. In the first
row, adding a future frame enhanced leg pose accuracy during a
kicking motion, and augmentation further improved performance,
aligning the output with the point cloud input. In the bottom row,
data augmentation increased robustness during occlusions, enhanc-
ing leg details while crawling.

Inference time comparison. For real-time applications, achiev-
ing a minimum of 60 fps is crucial. Table 4 outlines the elapsed times
for methods on a Windows Laptop PC (i9-13900HX, RTX4080: TGP
175W). NIKI’s inference time of 14 ms falls within the acceptable
limit for 60 fps. However, the total time for bounding box detection,
a prerequisite step before pose generation, is 454 ms, rendering
it unsuitable for real-time applications. MOVIN demonstrates an
inference time of 48 ms. When combined with the point cloud cap-
ture and processing time, the total time increases to 54 ms, barely
meeting the 20 fps framerate. In contrast, although ELMO generates
poses from the previous two frames to the current frame at a 60Hz
rate, resulting in an input latency of 33ms, the inference time is only
5ms, bringing the total end-to-end elapsed time to just 44ms.
The reason our inference time is significantly faster compared

to MOVIN lies in the overall structure of our model architecture.
Specifically, in the point embedding section, MOVIN simply utilizes
PointNet++, whereas our method employs body-patch grouping and
Mini-PointNet to efficiently extract point features for each group.

Table 4. Total elapsed times for different frameworks.

Framework Time𝑚𝑠

NIKI inference 14
+ bounding box detection 454
MOVIN inference 48
+ point cloud capture & process 54
ELMO inference 5
+ latency 38
+ point cloud capture & process 44

Skeleton offset error. Table 5 displays the average bone length
and direction errors of our skeleton calibration model (Sec. 5) eval-
uated on a test set comprising 7 subjects with heights of 155, 160,
168, 171, 177, and 179cm sampled from ELMO dataset. Our model
achieves low errors, with an average joint length error of 1.52cm and
direction error of 0.22°. Figure 7 and supplementary video demon-
strate the calibration model’s robust performance across users with
diverse body shapes, outfits, and hairstyles. The model accurately
predicts initial offsets, facilitating precise fitting of the scaled mesh
to the captured point cloud.

Table 5. Average offset length and direction errors by body parts (number
of joints in brackets).

Hips (1) Spine (4) Arm(8) Leg (8) Total (21)
length error𝑐𝑚 2.41 1.22 1.68 1.39 1.52
direction error° − 0.11 0.34 0.17 0.22

6.3 Qualitative Evaluation
We qualitatively compare our real-time output of ELMO with Xsens
Awinda [awi 2011], MOVIN, and NIKI 3 for the wild test dataset
(Sec. 6.1). Please refer to the supplementary video for a visual com-
parison.

ComparisonwithXsens and SOTAmethods. Figure 13 presents
the ground truth sequence and real-time output sequence of ELMO,
Xsens Awinda, MOVIN, and NIKI. Overall, NIKI performs poorly
across all scenarios, containing severe jitters and inaccurate poses.
Xsens shows weakness in height change and global drifting, exem-
plified in jumping (4𝑡ℎ row) and rapid turning (6𝑡ℎ row). Moreover,
the inherent limitation of acceleration-based tracking results in
inaccurate overall global positions.
MOVIN exhibits significant jitter in the output poses and fre-

quently struggles to match the input point cloud (1𝑠𝑡 , 2𝑛𝑑 , and 5𝑡ℎ
rows). As the method runs at 20 fps, the output poses often lose
continuity, especially for relatively fast and continuous motions,
including rotating the foot (5𝑡ℎ row) and high kick (1𝑠𝑡 row). In
addition, the method sometimes suffers a y-axis flip for global ori-
entation as in ballet turn (3𝑟𝑑 row), making the character face the
wrong direction. Furthermore, since the output is at 20 fps, severe
frame drop can be observed when visualized in a 60 Hz environment.

In contrast, ELMO achieves natural and continuous 60 fpsmotions
akin to Xsens while accurately capturing the global root trajectory.
Furthermore, ELMO excels in capturing precise details such as body
part contacts and producing plausible motions even in the presence
of occlusion.

Skeleton Calibration. For the qualitative evaluation of the skele-
ton calibration model, we conducted a wild test with three subjects:
a 157 cm female, a 171 cm male, and an 182 cm male. After acquiring
a single-frame point cloud while each subject was in the A-pose
at origin, our model predicted the user skeleton offsets. Figure 7
demonstrates that our model successfully predicted the skeleton
offsets for each subject.
3The outputs from NIKI lack root transformation, so we copy the root transformation
from the Xsens results to the NIKI output.
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Fig. 7. Skeleton calibration results for wild input. From left to right: 171 cm
male, 157 cm female, and 182 cm male.

Global drifting. Global drifting in motion capture leads to in-
accuracies over time, significantly affecting the precision and relia-
bility of motion data. In long sequences, these errors accumulate,
causing substantial positional deviations. To compare the global
drifting issues, we conducted an experiment where the subjects ini-
tiated dynamic motion from the origin, continued for 1-2 minutes,
and then returned to the origin. The objective was to determine
whether they precisely returned to the same position.

As depicted in Figure 8, our model and the MOVIN model demon-
strate consistent positions at the starting and ending points when
returning to the origin. In contrast, Xsens exhibits significant global
drifting, confirming its final position is notably distant from the
starting point.

6.4 Attention between joints and body-patch point groups.
In Fig. 9, (a) shows an input point cloud and the corresponding pose
output for a specific time frame. The left image of (b) visualizes the
center point (highlighted in color) of 32 body-patch point groups
within the input point cloud, while the right image illustrates the
attention map between the right arm joints and the body-patch

Fig. 8. Global Drifting results on ELMO (Yellow), Xsens (Blue), and MOVIN
(Green). The initial character at the origin is depicted as transparent; upon
returning to the origin, the character appears solid.

Fig. 9. (a) Input point cloud and output pose. (b) Attention map showing a
higher correlation between right arm joints and groups indexed 5 and 13.

point groups. The x-axis of the attention map represents four joints
in the right arm (grouped within the red border line in (a)), and the
y-axis represents the 32 body-patch point groups.

Notably, the attention map shows high values on groups indexed
5 and 13, whose center points are located closer to the wrist and
elbow joints. This suggests that our design choice of embedding
the point cloud by body-patch, combined with the self-attention for
Motion Tokens and Point Tokens, effectively captures the correlation
between human joints and the body-patch groups from the input
point cloud.

6.5 Real-time Motion Capture Applications
To highlight the practicality of ELMO, we seamlessly integrated
it into real-time applications running at 60 fps using the Unity3D
engine. For a comprehensive visual overview of the results, please
refer to our supplementary video.

System setup. The process begins by positioning a single LiDAR
sensor in front of the user. A laptop processes the incoming signals
from the LiDAR sensor to generate motion data output. Next, the
boundary or region of interest (ROI) is defined to specify where
the motion capture will occur, ensuring focus on pertinent areas.
The subject’s skeleton offset is then registered using our calibration
model. Finally, real-time motion capture is initiated through the
ELMO framework, enabling seamless tracking of the user’s move-
ments. Figure 10 illustrates the overall system setup process.

Fig. 10. System setup process for real-time motion capture.
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Fig. 11. Left: live streaming with two subjects engaged in martial arts. Right:
Interactive shooting game.

Live streaming. We demonstrate our framework’s ability to
stream output motion in real-time for single-subject actions, object
interactions, and two-subject interactions.

Figure 1 showcases ELMO’s output poses across various actions,
highlighting its versatility in capturing both common movements
like walking, running, and jumping, as well as more intricate actions
such as lying down, doing push-ups, and performing cartwheels. Our
method accurately predicts foot contact from the output, facilitating
the removal of foot-skating. Additionally, ELMO captures object
interaction motions, such as sitting on a chair and placing a hand
on a table. Notably, even with small occlusions, ELMO generates
plausible motions, as demonstrated in the rightmost image featuring
a narrow table. Moreover, ELMO’s lightweight model ensures low
latency when handling multiple subjects. The left image of Fig. 11
illustrates its proficiency in accommodating interactive dynamic
actions like martial arts.

Interactive multi-player game. In the right image of Fig. 11,
two subjects are depicted engaging in a shooting game, accompanied
by in-game snapshots. Our method enables precise global tracking,
facilitating immersive interactions within the virtual environment.

7 DISCUSSION ON LATENCY VS. ACCURACY
ELMO takes an in-betweening-based upsampling strategy by pro-
cessing the point cloud input of frame 𝑖+3 and conducting a 3-frame
upsampling for frames from 𝑖 + 1 to 𝑖 + 3. In contrast, the baseline
ELMO (Sec. 6.2) predicts the poses of future frames 𝑖 + 1, 𝑖 + 2, and
𝑖 + 3 from the point cloud input of the current frame 𝑖 , making it a
prediction-based upsampling method.
While Baseline ELMO provides the benefit of zero-latency up-

sampling, it faces challenges when handling dynamic movements.
Inaccuracies in predicting future frames can diminish accuracy,
especially during acyclic rapid body motions. This can lead to accu-
mulated errors and discontinuity in the output motions.

By utilizing the point cloud input of one future frame, ELMO intro-
duces a latency of 33𝑚𝑠 (equivalent to 2 frames at 60𝐻𝑧). However,
employing in-betweening-based upsampling effectively mitigates
the challenges faced by baseline ELMO and significantly improves
accuracy, which is evident in our evaluation results in Section 6.

Given the high quality of motion capture it provides, a latency of
50𝑚𝑠 is considered acceptable in real-time scenarios. Hence, we
have opted for the in-betweening-based upsampling approach.

8 LIMITATION AND FUTURE WORK
ELMO has several limitations that need to addressed in future stud-
ies. One challenge is self-occlusion, where the subject’s body ob-
structs other body parts, particularly when standing sideways. This
can result in ELMO generating plausible but imprecise poses that
may not accurately align with the actual pose. Employing a multi-
LiDAR system will be a promising solution by eliminating the oc-
cluded areas.
Additionally, when the user’s action significantly deviates from

the distribution of the training dataset, our motion prior generates
only the closest plausible motion. As a result, it may not precisely
track the exact pose while producing a convincing motion. Similarly,
in challenging environments with degraded input (such as missing
frames/points, sparse sampling, or self-occlusions), the model is
expected to generate a plausiblemotion butmay struggle to precisely
track the actual pose.

To capture multi-person scenarios, we use a clustering algorithm
to separate the input point clouds from each person and perform
individual motion inference. Consequently, ELMO is restricted to
non-overlapping dedicated zones for each subject, as the model
fails when subjects’ point clouds aggregate into a single cluster. We
also handle occlusion from large objects like desks by placing the
object in the desired position and filtering out its point cloud during
background removal. This ensures that only the user’s point cloud
is captured. However, this approach cannot handle moving objects.
A promising direction for future work is integrating point cloud
segmentation with the motion capture framework to address these
limitation.
For data augmentation, we does not reflect variations for hair

and clothing. Since users in real-world scenarios may have diverse
hairstyles and outfits, our current augmentation method may not
be entirely appropriate. To overcome this limitation, Combining
hair and clothing with the human model could yield higher quality
synthetic data.

9 CONCLUSION
We introduced ELMO, an upsamplingmotion capture framework uti-
lizing a single LiDAR sensor. ELMO achieves 60 fps motion capture
from a 20 fps point cloud sequence with minimal latency (< 44𝑚𝑠)
through its unique upsampling motion generator. Enhanced by a
novel embedding module and attention coupling, ELMO delivers
real-time capture performance comparable to off-the-shelf motion
capture systems, eliminating the necessity for time-consuming cali-
bration and wearable sensors. Additionally, our introduced LiDAR-
Mocap data augmentation technique significantly enhances global
tracking performance.
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Fig. 12. (a) Samples of offline outputs on the ELMO dataset. From left to right: Ground Truth (Grey), ELMO (Yellow), MOVIN (Green), and NIKI (Pink). (b)
Samples of offline outputs on the MOVIN dataset. From left to right: Ground Truth (Grey), ELMO (Yellow), MOVIN (Green), NIKI (Pink), MotionBert (Purple),
and VIBE (Brown).

Fig. 13. Qualitative comparison of real-time motion capture performance, featuring ELMO and state-of-the-art methods. The sequence, from left to right,
includes ground truth, ELMO (Yellow), Xsens Awinda (Blue), MOVIN (Green), and NIKI (Pink). Notable points are denoted by red circles.
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